Міністерство освіти і науки України
Naціональний аерокосмічний університет ім. М.Є. Жуковського
“Харківський авіаційний інститут”

ЗАТВЕРДЖУЮ
Проректор ХАІ з НПР

В.М. Павленко

“25” лютого 2015 р.

Фахове вступне випробування зі спеціальності:

8.05090204 «Біотехнічні та медичні апарати і системи»

Програму затверджено на кафедрі Виробництва радіоелектронних систем літальних апаратів, протокол № 14 від “02” лютого 2015 р.

Завідувач кафедрою, д.т.н., професор

В.І. Кортунов

Програму погоджено НМК факультету
Радіотехнічних систем літальних апаратів

Голова НМК факультету, к.т.н., професор

О.О. Орєхов

Харків 2015
Вступ

Фахове вступне випробування зі спеціальності 8.05090204 «Біотехнічні та медичні апарати і системи» складається з п’яти дисциплін:

- «Елементна база радіоелектронних апаратів»,
- «Основи проектування радіоелектронних апаратів»,
- «Схемотехніка»,
- «Мікропроцесори в радіоелектронних апаратах »
- «Основи виробництва радіоелектронних апаратів»

Згідно п. 5.2 Правил прийому до Національного аерокосмічного університету ім. М.С. Жуковського "Харківський авіаційний інститут" у 2015 р. результат фахового випробування визначається за 100-бальною шкалою.
Програма з дисципліни «Елементна база радіоелектронних апаратів»

1. Пасивні елементи.

Резистори. Конденсатори. Індуктивні компоненти. Трансформатори.

2. Елементи функціональної електроніки.

Запам'ятовуючі пристрої. Пристрої частотної фільтрації. Твердого та аналоги індуктивно-емісійних кіл. Пристрої часові затримки сигналів. Елементи комутації. MEMS- комутатори. Електроакустичні перетворювачі (гучні мовці, телефони, мікрофони, класифікація, основні характеристики).

3. Активні електрорадіоелементи.

Електровакуумні прилади. Електровакуумні діоди, тріоди, багатосіткових радіолампи. Електровакуумні прилади діапазону НВЧ. Газорозрядні прилади. Фотоелектронні помножувачі.

4. Пристрої відображення інформації.

Засоби відображення інформації на основі рідких кристалів, газорозрядні, електролюмінесцентні та катодолюмінесцентні, на основі світловипромінюючих діодів. Електронно-променеві прилади.

Література

Програма з дисципліни «Основи проєктування радіоелектронних апаратів»

1. Конструкції РЕА.

Зовнішні фактори, що впливають на електронне устаткування. Корозія, механізми корозії. Ряд електрохімічних напруг. Вплив пилу, полів НВЧ, іонізуючого випромінювання. Класифікаційні ознаки радіоелектронної апаратури. Категорії і групи. Особливості РЕА біотехнічного та медичного призначення. Типові конструкції РЕА. Систематизація конструкцій РЕА. Універсальні типові конструкції. Стадії розробки РЕА. Конструкторська документація РЕА, її основні різновиди. Особливості конструювання друкованих плат. Захист РЕА від динамічних впливів, герметизація. Оцінка віброміцності вузлів РЕА.

2. Електромагнітна сумісність

Електромагнітна сумісність РЕА. Різновиди паразитного зв'язку. Електромагнітне екранивання. Принципи екранивання постійного магнітного поля, та високочастотного поля. Заземлення. Захисне заземлення. Сигнальні землі. Схеми низькочастотного заземлення. Заземлення екранів кабелів. Захист контактів. Ендуктивні навантаження в ланцюгах комутації. Ланцюги захисту контактів при індуктивних навантаженнях, рекомендації з вибору ланцюгів захисту контактів.

3. Теплові режими РЕА.

Кондуктивний теплообмін у тілах. Дифференційне рівняння теплопровідності у частинних похідних. Теплові опори елементарних прошарків (стінок). Теплові опори складових стінок - формулі та схеми. Теплова схема теплонавантаженого елемента, встановленного на радіаторі. Теплообмін випромінюванням, основні одиниці випромінюваності, поняття абсолютно чорного тіла, абсолютно білого тіла, прозорого тіла. Основні закони випромінювання - закон Планка, закон Віна, закон Стефана – Больцмана, закон Ламберта. Сонячне випромінювання, екранивання сонячного потоку, ефективність. Конвективний теплообмін у ЕА. Критерії Нуссельта, Грассгофа, Прандтля, Рейнольдса. Форми зображення критеріальних рівнянь. Плівкові, ламінарні, перехідні та турбулентні режими переміщення середовищ. Витрати середовищ. Характерні розміри тіл, що знаходяться у процесі теплообміна за механізмом конвекції. Закон Ньютона – Ріхмана.

Література

Програма з дисципліни «Схемотехніка»

1. Теоретичні основи аналогової схемотехніки.
 Спектр сигналу. Періодичні, неперіодичні, випадкові сигнали, шуми та їх характеристики. Модуляція сигналів. Комплексна передатна функція та її аналітичне визначення. Ампілуздно-частотна, фазочастотна, імпульсна та перехідна характеристики. Резонансні явища та перехідні процеси у електронних колах. Перетворення сигналів частотно-вибірними колами. Пасивні електричні фільтри.

2. Схемотехніка аналогових пристроїв.
 Підсилювачі постійного, змінного струму, імпульсних та резонансних підсилювачів на біполярних та полювих транзисторах. Операційні підсилювачі. Аналогові суматори, інтегратори. Активні фільтри. Детектори сигналів. Підсилювачі потужності, їх зміщення та термокомпенсація. Генератори гармонічних сигналів. Генератори - перетворювачі. Схеми випрямлення та фільтрації змінного струму. Параметричні стабілізатори. Стабілізатори з використанням зворотного зв'язку.

3. Аналого-цифрові пристрої.
 Прострої порівняння сигналів. Аналого-цифрові перетворювачі. Джерела опорного струму. Цифро-аналогові перетворювачі.

4. Основи цифрової схемотехніки.
 Елементарні логічні функції. Синтез цифрових пристроїв на елементарній логіці та їх мінімізація. Цифрові шифрато́ри, мультиплексори, дешифрато́ри. Тригери (RS, T, D, JK). Лічильники, дільники частоти. Регістри, статична та динамічна пам'ять, пам'ять, що перепрограмується, Flesh-пам'ять. Програмовані логічні інтегральні схеми (ПЛІС).

5. Схемотехніка цифрових та цифро-аналогових пристроїв.
 Прострої індикації та вводу інформації. Цифрові пристрої для вимірювання інтервалів часу, частоти, струму, напруги, температури, прискорення. Прострої керування частотою, тривалістю, напругою, силою струму, температурою та ін. Цифрові автоматичні пристрої.

Література

Програма з дисципліни «Мікропроцесори в РЕА»

1. Загальні принципи побудови мікропроцесорів
Мікроконтролери (МК), мікропроцесори (МП) та мікро - ЕОМ. Типові архітектури. Програмно-апаратні засоби розроблювача. Особливості програмування МК. Мови програмування МК.

2. Апаратні засоби мікропроцесорної РЕА
Типова апаратна частина МК модулів. Порти, таймери, EEPROM, аналого-цифрові перетворювачі та їх програмування. Стандартні інтерфейси обміну даними. Узгодження рівнів дискретних входів – виходів. Розширення функціональних можливостей МП (зовнішні RAM, ROM). Програмно-апаратне керування безупинними процесами. МП системи реального часу.

3. Схемотехніка мікропроцесорних РЕА
Схеми індикації і ручного введення даних (ЖКІ, ДСІ, TFT, клавіатурні модулі та ін.). Динамічна індикація. Нормування і перетворення аналогових сигналів для МП. Перетворення не електричних сигналів для МК. Підключення зовнішніх АЦП та ЦАП до МП. Вимірювачі напруги, частоти, часових інтервалів на ґрунті МК. МП- керування виконуючими пристроями. Цифрові фільтри на МП.

Література

Програма з дисципліни «Основи виробництва радіоелектронних апаратів»

1. Основи управління виробництвом радіоелектронних апаратів.

Типи виробництв. Загальні характеристики виробництв різних типів. Розрахунок коефіцієнту серййності. Взаємозв’язок між значенням коефіцієнту серййності та типом виробництва. Моделі прийняття виробничих рішень: крива досвіду. Розрахунок трудомісткості виготовлення РЕА з урахуванням досвіду освоєння технології. Спрощена формула розрахунку трудомісткості виготовлення виробу РЕА під час подвоєння об’єму випуску.

2. Організаційна підготовка виробничих процесів.

3. Конструкторсько-технологічна підготовка виробничих процесів.

Технологічна готовність виробництва. Класифікація технологічних процесів виготовлення РЕА. Поняття технологічності конструкції. Розрахунок окремих показників технологічності конструкції. Розрахунок комплексного показника технологічності конструкції. Оцінювання рівня технологічності конструкції. Технологічна схема складання вузлів РЕА. Схема складання віязлового типу. Схема складання з базовою деталлю.

4. Основні методи розрахунку точності виробництва радіоелектронних апаратів.

Оцінювання точності виробничого процесу за кривими розподілу. Оцінювання точності виробничого процесу за точностними діаграмами. Оцінювання точності технологічних процесів за контрольними картами Шухарта. Розрахунок показників можливостей технологічних процесів під час виробництва РЕА.

5. Основи процесів контролю якості виробництва радіоелектронних апаратів.

Умови необхідності контролю під час виробництва РЕА. Методи вибіркового контролю виробів РЕА. Контрольні карти за якісними показниками.

Література
